Markov Chain Monte Carlo in Practice: A Roundtable Discussion
نویسندگان
چکیده
Markov chain Monte Carlo (MCMC) methods make possible the use of flexible Bayesian models that would otherwise be computationally infeasible. In recent years, a great variety of such applications have been described in the literature. Applied statisticians who are new to these methods may have several questions and concerns, however: How much effort and expertise are needed to design and use a Markov chain sampler? How much confidence can one have in the answers that MCMC produces? How does the use of MCMC affect the rest of the model-building process? At the Joint Statistical Meetings in August, 1996, a panel of experienced MCMC users discussed these and other issues, as well as various “tricks of the trade.” This article is an edited recreation of that discussion. Its purpose is to offer advice and guidance to novice users of MCMC—and to notso-novice users as well. Topics include building confidence in simulation results, methods for speeding and assessing convergence, estimating standard errors, identification of models for which good MCMC algorithms exist, and the current state of software development.
منابع مشابه
A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملInformation-Geometric Markov Chain Monte Carlo Methods Using Diffusions
Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. Aft...
متن کاملMarkov chain Monte Carlo methods for visual tracking
Tracking articulated figures in high dimensional state spaces require tractable methods for inferring posterior distributions of joint locations, angles, and occlusion parameters. Markov chain Monte Carlo (MCMC) methods are efficient sampling procedures for approximating probability distributions. We apply MCMC to the domain of people tracking and investigate a general framework for sample-appr...
متن کامل“Turning Points” in the Iraq Conflict: Reversible Jump Markov Chain Monte Carlo in Political Science
We consider and explore structural breaks in a day-by-day time series of civilian casualties for the current Iraq conflict: an undertaking of potential interest to scholars of international relations, comparative politics, and American politics. We review Bayesian change-point techniques already used by political methodologists before advocating and briefly describing the use of reversible-jump...
متن کامل